Building Structure Condition Assessment How to Avoid Catastrophe

Joint ICRI/ACI Chapter Meeting Thursday, November 17, 2022, Noon The Whitley Hotel Buckhead

The Pinnacle of Structural Engineering

Concrete, Masonry, Steel, & Wood

Laws & Standards

Building Structure Condition Assessment

Building Structure Condition Assessment

- Champlain Towers Collapse
- Structural Engineering 101
- Failure Mechanisms

Learning Objectives

AIA **Continuing Education** Provider

Presentation today provides general information.

For specific advice, consult a professional.

Innovative Engineering Inc.

- Scott L. Weiland PE SE
 - BSCE University of Michigan
 - Graduate Studies:
 - San Jose State University
 - Georgia Institute of Technology
 - Level I sUAS Thermographer
 - BESI Building Envelope Certified Level 2
 - Haag Certified Inspector Commercial Roofs
 - Author, Presenter, Educator

Champlain Towers Collapse

- Built 1981
- 12 Story, 136 Units
- Cast-In-Place Concrete
- Plaza Slab
- Below Grade Level Parking Garage
- 2018 Report
- 40 Year Recertification Underway

Building Science – Plaza Slabs

Plaza Slabs – Protected Membrane

Building Structure Condition Assessment

Ref.: NRCA Detail WP-24

Building Structure - Definitions

Columns

• Beams

Slabs

Building Structure Condition Assessment

Foundations

Building Structure - Columns

- Failure Modes
 - Stress
 - Pure Compression
 - Combined Stresses
 - Shear
 - Lack of Confinement
 - Torsion
 - Buckling

INNOV ENGINE INCORPO

Building Structure – Beams & Slabs

Building Structure – Progressive Collapse

Building Structure Condition Assessment

ASI Extreme Loading

Building Science – Sources of Deterioration

• Water Damage

- Mold
- Corrosion
- Rot
- Termites & Insects
- Movement of **Materials**
 - Thermal
 - Moisture
 - Elastic Deformation
 - Creep

Impact Damage

- Dynamic Loads
- Lightning Strike
- Overload

• Other

- Wind, Earthquake, Flood
- UV Exposure

Reinforced Concrete - Deterioration

- Moisture
 - Corrosion
 - Freeze-Thaw
 - Sub-Efflorescence
- Cracking

Reinforced Concrete

Building Structure Condition Assessment

Add Reinforcing

Reinforced Concrete – Simple Span Beam/Slab

Plain Concrete

Reinforced Concrete

Prestressed Concrete

Reinforced Concrete – Multi-Span Beam/Slab

Tension

- Top over Columns
- Bottom between Columns

Reinforced Concrete - Corrosion

Building Structure Condition Assessment

B: Crack C: Corner Spall D: Delamination

Reinforced Concrete – Spall & Delamination

Spall

Delamination

Section Loss

Reinforced Concrete - Sounding

Building Structure Condition Assessment

Sounding Technology Inc.

Reinforced Concrete – Impulse Echo

Reinforced Concrete – Punching Shear

Reinforced Concrete - Cracks

.013" < Cracks < .035"

Cracks that Leak < .035"

Reinforced Concrete – Crack Repair (Route & Seal)

Crack Chasing

Crack Sealant

Reinforced Concrete – Crack Repair (Epoxy Injection)

Cracks > .035"

Inflatable Injection Port

Building Structure Condition Assessment

nc Restorations Engineered þ Photos

Masonry - Deterioration

- Thermal Expansion/Contraction
- Moisture
 - Expansion/Contraction
 - Corrosion
 - Freeze-Thaw
 - Sub-efflorescence
- Cracking

Masonry – Thermal Expansion/Contraction

	Thermal Expansion						Coefficients of Thermal Expansion	
						Material	in./in./ ⁰ F x 10 ⁻⁶	
	14					Wood		
		2					Pine (parellel to grain)	3.0
	12						Pine (perpendicular to grain)	19.0
9	. –							
0	10					Masonry		
—	10						Brick	3.6
×	-						Limestone	4.4
	8						Granite	4.7
Ш							Concrete Masonry Unit (CMU)	5.2
\sim	6						Marble	7.3
-	U			_				
Ţ.	٨						Concrete	
	4						Concrete (Normal Weight)	5.5
	-							
	2						Metals	
							Steel	6.5
	0						Copper	9.3
	U						Aluminum	12.8
		Brick	Limestone	CMU &	Steel	Aluminum		
		Co	Concrete			Finishes		
						Glass	5.0	
							Gypsum Plaster, Sand	7.0
Material							Gypsum Board	9.0

Masonry – Thermal Expansion/Contraction

No Expansion Joints

Creates Hinge at Corner

Masonry – Moisture Expansion/Contraction

Masonry – Thermal/Moisture Expansion/Contraction

Masonry – Thermal/Moisture Expansion/Contraction

Masonry – Corrosion Expansion

Masonry – Moisture Damage

Masonry – Creep & Settlement

Masonry – Unauthorized Openings

• Penetrations:

• Through Load Bearing Walls

Structural Steel - Deterioration

- Moisture
 - Rust
- Fatigue
- Modified or

Damaged Members

Structural Steel - Corrosion

- Surface Rust
- Section Loss
 - Flange
 - Web

Structural Steel - Corrosion

- Rust Expands:
 - 5 to 6 Times Original Volume
- Often Looks Worse Than It Is
- Scrape Rust
- Measure with Caliper

Structural Steel - Fatigue

Structural Steel – Altered/Damaged Members

Wood Framing - Deterioration

- Moisture
 - Rot
 - Insect Infestation
- Checks & Splits
- Missing or Modified
 Members

Wood Framing - Moisture

Wood Framing – Termite Infestation

Mud Tubes

Wood Framing – Termite Infestation

- Galleries
- Parallel to Growth Rings
- May not be visible
 - Thick lumber
 - Pressure Treated lumber

Wood Framing – Termite Infestation Probability

Note: Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by the region classification.

FIGURE R301.2(6 TERMITE INFESTATION PROBABILITY MAP

2000 INTERNATIONAL RESIDENTIAL CODE

- Exist in all states except Alaska
- Live in a Colony (nest) in the Ground below the Frost Line
- Dark, Damp Environment
- Soldiers are ¹/₄" Long and Whitish Crème in Color
- Can Penetrate 1/32" Openings.
- Travel in Shelter (Mud) Tubes to Shelter from Light

Wood Framing – Modified Members

Image: Russ LaBlanc

Laws & Standards – Why Condition Assessment

- Legal
- Deterioration
- Transfer of Ownership
- Change of Occupancy
- Renovation, Rehabilitation, and Restoration
- Strengthening or Hardening
- Damage
- Signs of Distress

Laws & Standards – Int'l Property Maintenance Code

SECTION 304 EXTERIOR STRUCTURE

304.1 General. The exterior of a structure shall be maintained in good repair, structurally sound and sanitary so as not to pose a threat to the public health, safety or welfare.

SECTION 305 INTERIOR STRUCTURE

305.1 General. The interior of a structure and equipment therein shall be maintained in good repair, structurally sound and in a sanitary condition. Occupants shall keep that part of the structure which they occupy or control in a clean and sanitary condition. Every owner of a structure containing a rooming house, housekeeping units, a hotel, a dormitory, two or more dwelling units or two or more nonresidential occupancies, shall maintain, in a clean and sanitary condition, the shared or public areas of the structure and exterior property.

It's the Law!

Laws & Standards – ASCE Std. SEI/ASCE 11-99

Assessment

- Preliminary
- Detailed
- Materials
 - Concrete
 - Masonry
 - Metals
 - Wood
- Procedures
- Reporting

Laws & Standards – CASE Contract #16

- Document Review
- Visual Inspection
 - Gravity Load path
 - Lateral Load path
- Roof & Below Grade for Water Infiltration
- Façade Inspection
- Report

Laws & Standards – Inspection Checklist

- Sitework
- Safety •
- Foundations
- Basement
- Superstructures
- **Exterior Closure** •
- Roofing •
- Partitions & Doors
- Walls, Floors, Ceilings & Finishes •
- Conveying
- Plumbing •
- HVAC
- Electrical •

Laws & Standards – Frequency of Inspection

- Roof, Plaza & Below Grade Waterproofing
 - Biannual
 - Fall Before Winter
 - Spring After Winter
 - After Storm
 - After Work on Roof

Façade & Structural Systems

- Self Inspection: Annual
- Professional Inspection: Every 5 Years
- Other Systems
 - Annual Organized Self Inspection

Laws & Standards – Life Expectancy

- Building 50 Years
- Roofing
 - Metal 25 Years
 - BUR & SBS Mod-Bit 17 Years
 - APP Mod-Bit, EPDM, PVC 14 Years
 - TPO 13 Years
 - Polyurethane Foam 12 Years
- Sealants 10 to 20 Years
 - Silicone
 - Polyurethane

- Traffic Bearing Membrane:
 - 5 to 20 years
- Below Grade Waterproofing:
 - 50 Years (Modern)
- Protected Waterproof Membrane:
 - 50 Years (Modern)

Learning Objectives

- Building Structure Condition Assessment
 - Champlain Towers Collapse
 - Structural Engineering 101
 - Failure Mechanisms
 - Concrete, Masonry, Steel, & Wood
 - Laws & Standards

Building Structure Condition Assessment

AIA Continuing Education Provider

Scott L. Weiland PE SE sweiland@ieiusa.com 678-570-7399 (c)

Atlanta Office

Innovative Engineering Inc. 3380 Trickum Road, Bldg. 500, Suite 100 Woodstock, Georgia 30188 678-883-5868 (direct)

Seattle Office Innovative Engineering Inc. 11335 NE 122nd Way, Suite 105 Kirkland, Washington 98034 206-279-4360, X-202