

Building Envelope Inspection How to Manage Risk and Reduce Liability

Online Class

Tuesday August 18, 2020

The Pinnacle of Structural Engineering

Learning Objectives

Building Envelope Inspection

- Why
- Behavior
- Inspection
- Reporting

AIA Continuing Education Provider

Innovative Engineering, Inc.

- Scott L. Weiland PE
 - BSCE University of Michigan
 - Graduate Studies:
 - San Jose State University
 - Georgia Institute of Technology
 - Level I sUAS Thermographer
 - Articles:
 - Structure Magazine Building Façade Inspection Part I & II
 - Georgia Engineer Building Façade Inspection Part I & II
 - AIA Design Equilibrium Building Façade Inspection
 - BOMA Georgia Insight Magazine Falling Building Façade Closes Atlanta Streets

Building Envelope - Definitions

Façade Collapse - Cleveland

- 2015
- Father & 4
 Boys had just
 left car parked
 10 minutes
 before to have
 dinner.
- High Winds
 Blamed

Façade Cornice Collapse – 2017 Atlanta Sidewalk

Note: The video and presentation can be watched in full on the Innovative Engineering Inc. YouTube channel.

Falling Building Façade Closes Atlanta Streets

Falling Building Façade Closes Atlanta Streets

- 2017 34 Story Building
- Basis of Façade Article

Façade Ordinances

- New York, NY
- Columbus, OH
- Boston, MA
- Chicago, IL
- Milwaukee, WI
- Detroit, MI
- Pittsburg, PA
- St. Louis, MO
- Philadelphia, PA
- Cleveland, OH
- Cincinnati, OH
- San Francisco, CA

The International Property Maintenance Code

SECTION 304 EXTERIOR STRUCTURE

304.1 General. The exterior of a structure shall be maintained in good repair, structurally sound and sanitary so as not to pose a threat to the public health, safety or welfare.

Building Science – Environmental Separator

- Structural resistance to wind.
- Environmental protection from the elements, including moisture & temperature.
- Architectural appearance and aesthetics.

Building Science – Sources of Deficiencies

- Natural Aging
- Leakage
 - Roofing
 - Walls
 - Windows
 - Joints

Movement of Materials

- Thermal
- Moisture
- Elastic Deformation
- Creep
- Other
 - Impact Damage
 - Lightning Strike

Building Science – Moisture Exposure

- Water Intrusion: 70% of construction litigation
- Damage Functions
 - Water
 - Heat
 - Ultra-Violet Radiation

Building Science - Principles

- 90%/1%
 - 90% of the water intrusion problems occur within 1% of the total building exterior. Usually at terminations and transitions
- 99%
 - 99% of water intrusion problems are attributable to human error including detailing, specifications, or installation. Not material or system failures.

Building Science - Transition Details

Façade – 3 Wall Types

Mass Wall

Barrier Wall

Cavity Wall

Facade - Thermal Expansion

Materialin./in./°F x 10-6Voodine (parellel to grain)3.0ine (perpendicular to grain)19.0Masonryrick3.6imestone4.4iranite4.7
ine (parellel to grain) 3.0 ine (perpendicular to grain) 19.0 Aasonry rick 3.6 imestone 4.4
ine (perpendicular to grain) 19.0 flasonry rick 3.6 imestone 4.4
Jasonry rick 3.6 imestone 4.4
rick 3.6 mestone 4.4
rick 3.6 mestone 4.4
mestone 4.4
ranite 4.7
oncrete Masonry Unit (CMU) 5.2
1arble 7.3
oncrete
oncrete (Normal Weight) 5.5
1etals
teel 6.5
opper 9.3
luminum 12.8
inishes
lass 5.0
ypsum Plaster, Sand 7.0
ypsum Board 9.0

Facade - Moisture Expansion/Shrinkage

Façade - Thermal Expansion

Bond Break at Roof Line

Façade – Thermal Expansion

No Expansion Joints

Creates Hinge at Corner

Façade – Moisture/Thermal Expansion/Contraction

Façade – Moisture & Thermal Expansion/Contraction

Façade – Moisture Damage

Façade – Corrosion Expansion

Facade – Elastic Deformation & Creep

Facade – Impact Damage

Facade - Lightning Strike

Facade Inspection Procedure

- User interviews
- Document Research
- General Inspection
- Detailed Inspection
- Watertight Integrity
- Classifying Deficiencies
- Reporting
- Estimating

Façade Inspection - Visual

Façade Inspection - Detailed Close-Up

Boom Lift

Rope Access

Façade Inspection - Bore Scope (Brick Veneer)

Façade Inspection

Sealants

Façade Inspection - Air Infiltration

Roofing - Common Material Market Share

Roofing - Common Material Cost Data

Roofing - Ponding

Ponding > 48 Hours

- **Ponding:** Most common factor in roofing failure
- Water Shedding: Can make up for shortcomings in design, construction, durability, & maintenance.
- **Degradation:** Asphalt & Polymeric materials
- Freezing: Erodes surface aggerate
- Voids: Manufacturers warranty
Roofing - Built-Up Roofing (BUR)

- Blistering
- Splits
- Ridging/ Wrinkling
- Slippage

Roofing - Modified Bitumen

- Defective Lap Seams
- Shrinkage
- Checking
- Blistering
- Delamination
- Slippage
- Spitting

Roofing - EPDM

• Lap-Seam Failure

- Flashing
- Other Common Problems 8%
 - Puncture
 - Shrinkage
 - Wind Uplift
- Minor Problems @<3%
 - Fastening
 - Blistering
 - Embrittlement

Roofing - PVC

• Embrittlement

• Puncture

Roofing - TPO

Image by RCI

Premature Aging

- Erosion of Top Surface
- Small Holes/Slits
- Cracking
- Separation
- Seam Failures
- Newest Roofing Material

Roof Inspection Procedure

- User interviews
- Document Research
- Visual
- Moisture Survey
- Reporting
- Estimating

Roofing Inspection - Visual

• Easiest when someone finds it for you.

Roof Inspection - Drone Infrared

- Infrared Camera (IR)
- Best After Dusk
 - Insulation and Moisture Heats Up During the Day
 - Dry Insulation cools off faster than Wet Insulation
- Daylight Waiver Required
- Height to See Major Portions of Roof
- Safer and More Accurate than Handheld

Roofing Inspection – Thermal Imaging

Visual Red-Green-Blue (RGB)

Roof Inspection – IR Confirmation

Impedance Meter

Pin-Type Meter

Roofing Inspection – IR Confirmation

Roofing Core

Sample

Reporting

- Project Information
- General Building Description
 - Original Construction
 - Renovations
 - Additions
- General Building Condition
- Findings & Recommendations by Deficiency level
- Detailed Description of Building Structural, Façade & Waterproofing Systems
- Building Footprint w/ Deficiencies
- Elevation Photos
- Methods Used to Conduct Investigation
- Detailed Findings & Recommendations w/ Plans, Elevations, & Photos
- Estimate

Classification of Deficiencies

- Unsafe Condition
- Requires Repair/Stabilization
- Ordinary Maintenance

Learning Objectives

Building Envelope Inspection

- Why
- Behavior
- Inspection Process
- Reporting

Questions?

Scott L. Weiland PE sweiland@ieiusa.com 678-570-7399 (c)

Atlanta Office

Innovative Engineering Inc. 3380 Trickum Road Bldg. 500, Suite 100 Woodstock, Georgia 30188 678-883-5868 (direct)

Seattle Office

Innovative Engineering Inc. Corporate Center 11335 NE 122nd Way, Suite 105 Kirkland, Washington 98034 206-279-4360, X-202